A new triterpenoid from traditional Chinese medicine *Poria cocos* Libin Yang^a, Bei Qin^a, Suomin Feng^a, Shaojing Liu^a and Xiaomei Song^b*

^aXi'an Medical University,Xian, Shaanxi, 710021, P. R. China ^bShaanxi University of Chinese Medicine, Xianyang, Shaanxi,712083, P. R. China

A new triterpenoid, 3,4-secolanosta-4(28),7,9,24Z-tetraen-3,26-dioic acid, along with two known compounds 16deoxyporicoic acid B and 3-epidehydrotrametenolic acid were isolated from the dried sclerotia of *Poria cocos* Wolf (Polyporaceae). The structures are elucidated by spectroscopic methods and literatures.

Keywords: triterpenoid, Poria cocos Wolf, Polyporaceae

The sclerotia of Poria cocos Wolf (Polyporaceae), called Fuling in Chinese is traditionally used in Chinese medicine as a diuretic and sedative.^{1,2} Previous phytochemical investigations on the sclerotia of this species showed it contained lanostane-type triterpene acids,^{3,4} some of which possessed strong anti-inflammatory effects,^{5,6} cytotoxicities against human cancer cell lines,⁷ and induced apoptosis in prostate cancer cells⁸ and in H-ras-transformed rat2 cells.⁹ In addition. some triterpene acids from the epidermis of the sclerotia of P. cocos have been reported to possess inhibitory effects on DNA polymerases.¹⁰ In the course of our study, a new triterpenoid was isolated from the dried sclerotia of P. cocos. In this paper, we present the isolation and structural elucidation of the new triterpenoid and two known triterpenoids, 16-deoxyporicoic acid B (2),¹¹ and 3-epidehydrotrametenolic acid (3),¹² based on the spectroscopic analysis and literature data.

Compound 1 was obtained as a white solid. Its molecular formula was shown to be C30H44O4 based on HR-ESIMS data (m/z: 467.3159, calc. for $[M - H]^-$, m/z: 467.3161). The ¹H NMR spectrum of 1 showed the presence of an isopropenyl group (δ 4.36, 4.82, 1H each, brs, H-28; δ1.73, 3H, s, H-29) and three tertiary methyls (δ 0.67, 1.09, 0.93, 3H each, s, H-18, H-19, H-30) besides an angelic acid unit (δ 6.03, IH, t, J = 6.8 Hz, H-24; δ 2.13, 3H, s, H-27) and a secondary methyl $(\delta 1.00, 3H, d, J = 6.0 Hz, H-21)$. These facts indicate that 1 possessed an 3,4-seco-ring A identical to 2. Further comparison the NMR spectra between 1 and 2 indicated that there were some differences in the side chain. In the HMBC spectrum (Fig. 2), the correlations of H₃-21 and C-17, 20 and 22, H-24 and C-25, 26 and 27, showed that the carboxyl group carbons located at C-26 in 1 instead of C-21 in 2. By further analysis of the HMQC, HMBC and 1H-1H COSY spectra, all the proton and carbon signals have been assigned unambiguously. Therefore, compound 1 is elucidated as 3,4-secolanosta-4(28), 7,9,24Z- tetraen-3,26-dioic acid.

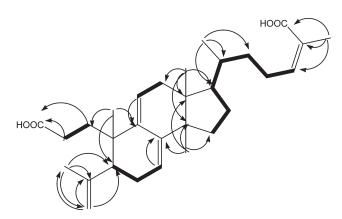


Fig. 2 The key HMBC (H \rightarrow C) and COSY (----) correlations of 1.

Experimental

IR spectra were recorded as KBr pellets on a Perkin-Elmer 599B spectrophotometer. MS were determined on a Bruker Daltonics Apex III mass spectrometer. NMR spectra were measured on Bruker DRX-400 spectrometers with TMS as the internal standard. and CDCl₃ as solvent. Silica gel (200–300 mesh, Qingdao Marine Chemical Co., China) was used for column chromatography and silica gel GF254 for TLC (Qingdao Marine Chemical Co., China). Sephadex LH-20 (GE), reversed-phase C-18 silica gel (60 mesh, Merck). Dionex P680ALPC equipped with an Alltima C-18 column (4.6 × 250 mm) was used for HPLC analysis and a semi-preparative Alltima C-18 column (10 × 250 mm) was used in sample preparation.

Plant material

The dried sclerotia of *Poria cocos Wolf (Polyporaceae)* were purchased from Wanshoulu Chinese medicine market in Xi'an, P.R. China, in July 2008. A voucher specimen (No. 20080177) is deposited in the laboratory of College of Pharmaceutical Science, Shaanxi University of Chinese Medicine, P.R. China.

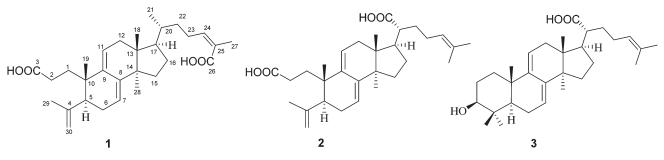


Fig. 1 Chemical structure of compounds 1–3.

554 JOURNAL OF CHEMICAL RESEARCH 2010

Table 1	¹ H and ¹³ C NM	R data (in CDCl ₃) t	for compound 1	1 (δ in ppm, J in Hz)
---------	---------------------------------------	----------------------------------	----------------	--

No.	$\delta_{\rm C}{}^a$	$\delta_{H}J/Hz^{b}$	No.	δ _c ^a	δ_{H} J/Hz $^{\scriptscriptstyle b}$
1α	36.3 (t)	2.10 °	16α	28.2 (t)	1.30 °
1β		1.89 (m)	16 β		1. 61 °
2α	30.3 (t)	2.47 °	17	51.3 (d)	1.13 °
2β 3		2.58 °	18	16.8 (q)	0.67 (s)
3	176.8 (s)		19	22.3 (q)	1.09 (s)
4	149.4 (s)		20	36.5 (d)	1.49 (m)
5	50.9 (d)	2.32 (brd, 7.1)	21	18.6 (q)	1.00 (d, 6.0)
6α	28.6 (t)	2.5 °	22α	36.3 (t)	1.65 °
6β 7		2.03 (m)	22 β		1.24 °
7	117.8 (d)	5.22 (brs)	23α	27.0 (t)	2.73 (m)
8	142.7 (s)		23 β		2.86 (m)
9	137.5 (s)		24	142.1 (d)	6.03 (t, 6.8)
10	36.7 (s)		25	128.7 (s)	
11	120.5 (d)	5.33 (brs)	26	170.7 (s)	
12α	38.9 (t)	2.14 °	27	21.6 (q)	2.13 (s)
12 β		2.14 °	28	24.3 (q)	0.93 (s)
13	44.6 (s)		29	22.2 (q)	1.73 (s)
14	50.5 (s)		30α	112.2 (t)	4.36 (brs)
15α	31.3 (t)	1.66 °	30 β		4.82 (brs)
15 β		1.31 °			

^a At 100 MHz; ^b at 400 MHz; ^c overlap.

Extraction and isolation

The dried powdered sclerotia of P. cocos (5.0 kg) were extracted with 95% EtOH (three times, each 20 L) at room temperature. The solvent was removed and the EtOH extract was suspended in distilled water and successively partitioned between petroleum ether, EtOAc and n-BuOH successively (three times, each 1.5 L). The EtOAc extract (65 g) was applied to a silica gel column, and eluted with chloroform containing increasing amounts of methanol. The fractions obtained from petroleum ether-EtOAc (1:1) elution were combined and subjected to repeated column chromatography and further purified by HPLC to yield pure compounds 1 (4 mg), 2 (8 mg), and 3 (5 mg).

3,4-Secolanosta-4(28),7,9,24Z- teraen-3,26-dioic acid (1): White solid; $[\alpha]_{D}^{20}$ + 30.9° (c 0.4, MeOH); UV (CHCl₃) λ_{max} (log ϵ) 241 (1.81), 267 (1.75) nm; IR (KBr): 2933, 1696, 1639, 1454, 1437, 1415, 1379, 1306, 1202, 1149 cm⁻¹; HR-ESIMS: revealed m/z: 467.3159, requires m/z: 467.3161 for C₃₀H₄₃O₄); ¹H and ¹³C NMR: see Table.

Received 9 August 2010; accepted 27 August 2010

Paper 1000291 doi: 10.3184/030823410X12853461890093 Published online: 22 October 2010

Reference

- 1 Z. Shan, Y.X. Yuan, Clinical application of Chinese medicine, Guang Dong People's Publisher, Guang Dong, 1975, pp. 136.
- 2 T. Namba, The encyclopedia of Wakan-Yaku (Traditional Sino-Japanese Medicines) with color pictures. revised edn, Hoikusya: Osaka, Vol. II, 1994, pp. 241-243.
- T. Tai, Akahori A and T. Shingu, Phytochemistry, 1991, 30, 2796.
- T. Tai, T. Shingu, T. Kikuchi, Y. Tezuka and A. Akahori, Phytochemistry, 1995, 39, 1165.
- 5 T. Kaminaga, K. Yasukawa, M. Takido, T. Tai and Y. Nunoura, Phytother. Res., 1996, 10, 581.
- E.M. Giner, S. Manez, M.C. Recio, R.M. Giner, C.N. Miguel and J.L. Rios, Planta Med., 2000, 66, 221.
- M. Ukiya, T. Akihisa, H. Tokuda, M. Hirano, M. Oshikubo, Y. Nobukuni, Y. Kimura, T. Tai, S. Kondo and H. Nishino, J. Nat. Prod., 2002, 65, 462.
- L. Gapter, Z. Wang, J. Glinski and K.Y. Ng, Biochem. Biophys. Res. 8 Commun., 2005, 332, 1153.
- 9 H.M. Kang, S.K. Lee, D.S. Shin, M.Y. Lee, D.C. Han, N.I. Baek, K.H. Son and B.M. Kwon, *Life Sci.*, 2006, **78**, 607. Y. Mizushina, T. Akihisa, M. Ukiya, C. Murakami, I. Kuriyama, X. Xu,
- H. Yoshida and K. Sakaguchi, Cancer Sci., 2004, 95, 354.
- 11 T. Akihisa, Y. Nakamura, H. Tokuda, E. Uchiyama, T. Suzuki, Y. Kimura, K. Uchikura and H. Nishino, J. Nat. Prod., 2007, 70, 948.
- 12 T. Tai, A. Akahori and T. Shingu, Phytochemistry, 1993, 32, 1239.